
UCRL-JRNL-221281

Beyond Spin-Orbit: Probing
Electron Correlation in the Pu 5f
States

J. G. Tobin

May 10, 2006

Journal of Alloys and Compounds



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Beyond Spin-Orbit: Probing Electron
Correlation in the Pu 5f States

Tobin, J. Alloys Cmpds          Page 1 5/3/06

J.G. Tobin,

Lawrence Livermore National Laboratory,

Livermore, California 94550, USA

ABSTRACT

Experiments planned to address the issue of electron correlation in the Pu

5f states are described herein.  The key is the utilization of the Fano Effect, the

observation of spin polarization in nonmagnetic systems, using chiral excitation

such as circularly polarized X-rays.
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I.          INTRODUCTION

The enigma of Pu electronic structure is being unraveled.  Sixty years

after its discovery, the mystery of the electronic structure of Pu is finally being

resolved.  In a series of experiments and linked theoretical modeling, the range

of possible solutions for Pu electronic structure has been dramatically reduced.

The approach is to experimentally determine which potential terms are the

largest.

HY = -(— 2/2m)Y + VY,       where V= V1 + V2 + V3 + V4 + …

Synchrotron-radiation-based X-ray absorption, electron energy-loss

spectroscopy in a transmission electron microscope, multi-electronic atomic

spectral simulations and first principles calculations (Generalized Gradient

Approximation in the Local Density Approximation, GGA/LDA) have been used to

investigate the electronic structure of Plutonium (Pu). [1-4] From these studies,

the following key insights have been gleaned.

1. Russell-Saunders Coupling fails for Pu. Pu is a jj-skewed Intermediate

Coupling case, with a large 5f spin-orbit coupling.

2. The number of 5f electrons in Pu is approximately 5.

3. Spin orbit splitting dominates delocalization effects:  VSO > VDelocalization ,

to the point that the Pu 5f states can be viewed as predominantly

localized.
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The remaining issues for Pu electronic structure are primarily those

of electron correlation effects.  Based upon the success of magnetic

methods in explaining the physical properties of the different phases of Pu

[5-10], it is possible to hypothesize that for d-Pu there are strong indications

that VMAG perturbs VSO  and VMAG > VDelocalization. In Pu, it is expected to

observe large but counter aligned spin and orbital polarizations or magnetic

moments within the 5f manifold. The counter alignment should lead to

substantial cancellation.  However, there would need to be an additional

shielding or cancellation going on in d-Pu, such as Kondo Shielding [11-13],

Spin Fluctuation [14], Non-Collinearity [15], or Averaging [10]. In any case,

the magnetic cancellation must be complete: Pu has no net magnetic

moment. [16,17] Alternatively, there is the possibility that there are no

magnetic substructures and that the electron correlation is a type of pure

Kondo shielding best described by Dynamical Mean Field Theory.  [11-13]

These last two issues can be resolved with the Fano Effect measurements,

as will be described below.

The approach is founded upon a model in which magnetic and spin-

orbit splittings are included in the picture of the 5f states and upon the

observation of chiral/spin-dependent effects in non-magnetic systems. By

extending a quantitative model developed for the interpretation of core level

spectroscopy in magnetic systems, it is possible to predict the contributions

of the individual component states within the 5f manifold.  This has lead to a



Beyond Spin-Orbit: Probing Electron
Correlation in the Pu 5f States

Tobin, J. Alloys Cmpds          Page 4 5/3/06

remarkable agreement between the results of the model and the previously

collected spectra of d-Pu(Ga).

II           Estimating the Magnitude of the Magnetic Substructure with XAS

It is important to digress for a moment and reconsider the Pu Density of

States (DOS).  In a recent PRB [4], Kutepov calculated both a non-magnetic

(NM) and Anti-Ferromagnetic (AF) DOS. (Figure 1) Both agree qualitatively with

the simple picture derived from spectroscopic results.  The NM and AF limits are

related, being on opposite ends of the plot below in Figure 1.  (For NM, Hs/z = 0,

and for AF, the extreme limit would be Hs/z > 10. Here Hs = Spin Field

(Exchange) and z = Spin-Orbit Parameter.) The spectrum labeled AF is, in fact,

an intermediate solution, where the spin-orbit splitting and exchange splitting are

of the same order of magnitude.  Is it possible to derive the characteristics of the

intermediate solution directly from experimental data?

One way to extract the possible size of the magnetic perturbation would

be to analyze the X-ray Absorption Branching Ratio  of Pu for  the 4d to 5f

excitation, assuming a jj limit with a magnetic splitting. This has been done and

the result is shown below in Tables 1 and 2 and Figures 2-5.  (It should be noted

that the EELS results for a-Pu and d-Pu are essentially identical with each other

and with the XAS result for a-Pu. [3])

There are several steps to this process.  First, the orthogonalized initial

states must be generated, following the procedure developed previously for

shallow core levels in a magnetic system. [18]  The resultant states and their

energy dependence are shown in Tables 1 and 2 and Figure 2.  Next, the state-
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to-state matrix elements must be calculated for the case of linearly polarize X-

rays, consistent with the experiments performed at the Advanced Light Source.

[1-4] To do that, it is necessary to calculate the circular-polarization-driven

transition moments (Figure 3) and then sum properly.  From there, it is then

possible to predict how the Branching Ratio, B = A5/2/(A5/2 + A5/2 ) with A as the

intensity at each edge, will change as the magnetic effect is increased, as shown

in Figure 4.

Thus, the Pu 4d to 5f XAS data (inset in Figure 4) has been analyzed with

a simple one electron picture with 5 electrons in the 5f level (n = 5), magnetically

polarized 5f states, and linear photon polarization, including the correct state to

state transition cross sections within the electric dipole approximation.  The

branching ratio analysis gives the result that Hs/z = 2.5. (See Figure 4.) From

Kutepov’s calculations it is known that DESO ≈ 2 eV and using Hs/z = 2.5, DEMAG

≈ 0.2 eV is obtained. (See Figure 5)

III          Comparison to PES Experimental Results

The new model can explain the “regular” photoemission results for d-Pu.

(Figure 6) Using the value of Hs/z = 2.5 and including the correct state to state

transition cross sections within the electric dipole approximation for

Photoelectron Spectroscopy (PES), the magnetic perturbation model  (VSO +

VMAG) gives fairly good agreement with our data, bulk d and bulk a with a d

reconstruction: at worst, the model result is semi-quantitatively correct.

Interestingly, the model is closer to the results of Butterfield et al [19], where the
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small remaining oxygen-driven contributions have been reduced even further.

Please note that the model has no delocalization nor hybridization in it.  In the 5f

states, delocalization and hybridization are essentially the same.  Thus the result

of this analysis suggests that hybridization and delocalization play a role in the d-

Pu 5f states but it is a TERTIARY role…..VSO > VMAG   > VDelocalization.

Before progressing further, it is useful to consider how the simulated

photoelectron spectrum was obtained.  Again, state-to-state calculations are

performed for the case consistent with the experimental set up, i.e. linear

polarization, following the procedure developed earlier [18].  Also again, it begins

with the strong selection rules of the circular polarization cases and then

summing appropriately.  The initial states are the occupied 5f states with the

energy dependences shown in Figure 2.  The possible intensity for each state will

depend upon the value of Hs/z, as shown in Figure 7.  For d-Pu, it is assumed

that the occupancy is 5.1. [5] Thus, States 14, 13, 12, 11, and 10 are fully

occupied and State 9 is only partially occupied (0.1) and tied to the Fermi

Energy.  Only occupied states will contribute to PES, each in proportion to its

occupation.  The final state is a plane wave at normal emission, directed into the

electron analyzer.  Both final states, d –wave and g-wave, were considered, as

shown in Table 2.  (It is also possible to obtain spin dependent dichroisms for

each state, as well as  a preliminary estimate of the magnetic moments, as

shown in Figure 7.  The spin dichroisms will  be discussed in more detail below.)

To obtain a spectrum, however, it is also necessary to have an estimate of (1)
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peak shape and (2) the energy placement of the states.  Here, a Doniach-Sunjic

lineshape (Figure 8) has been used, for each specific occupied initial state.  The

parameters used followed the guidelines below.

1. The DS-asymmetry parameter was 0.3 throughout.

2. The Intensity and Dichroism values for each state, 9 through 14, were kept

constant throughout.  The values used corresponded to the case of Hs/z

<< 1 and for the f to d transition.  By using the values corresponding to

Hs/z << 1, the effect of errors in the determination of Hs/z are minimized.

As shown in Table 3, the matrix elements for the f to g-wave and f to d-

wave are very similar for the Intensities and differ only by a negative sign

in the Dichroism.

3. The lifetime peak-width value was extracted from the experimental Am He-

II spectrum of Naegele. [20] The lifetime values were proportional to the

Am value and allowed to diminish linearly to zero as binding energy went

to zero, for each individual state.

4. The tentative “exchange splitting” value was extracted from our

experimental Pu  XAS spectrum, as described above, with an effective

value of approximately 0.2 eV.

5. No further optimization of parameters was performed.

IV         Spin Polarized PES Measurements

The acid test of the new model of Pu electronic structure will be the spin

dependence. Using the Fano Effect (Double Polarization Photoelectron
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Dichroism), a strong spin dependence in Non-Magnetic Pu should be observed,

as shown in Figure 9.  The Fano Effect is the emission of spin polarized electrons

by NONMAGNETIC materials, when excited by circularly polarized photons, as

predicted by U. Fano [21] and measured shortly thereafter. [22-24]  Fano

Dichroism PES  is the ideal technique with which to probe for such a dynamically

shielded moment, with (1) a probe time on the scale of 10-18 seconds and (2) the

capability to see spin effects in nonmagnetic materials.

At this point, it is useful to digress again and consider the “Fano Effect”

and its special characteristics in more detail. It is believed that Fano effect

measurements (aka Double Polarization Photoelectron Spectroscopy, DPPS) are

the key to unraveling the electron correlation in Pu.  In Fano Effect

measurements, one uses a chiral excitation and true spin detection of the

electrons in NONMAGNETIC materials to gain detailed information about the

valence band electronic structure of these materials.  In ferro-magnetic systems,

it is only necessary to have only single polarization because of the presence of

the macroscopic magnetization vector.  In the case of ferro-magnetic systems

with a double polarization experiment, the major improvement is in increasing the

magnitude of the observed effects, at the cost of raw signal rate.  In non-

magnetic systems with single polarization, no effect is observed.  In order to see

the underlying spin characteristics in non-magnetic systems, one must resort to

double polarization experiments. (Figure 10)

The Pu spectrum shown in Figure Figure 9 is a simulated spin dichroism

spectrum, based upon the theoretical model developed in Section III and
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illustrated in Figures 6-8. As a test of this model, it has also been applied to he

case of the Au 4f Fano Effect, as shown in Figure 11.  Clearly,  even with this

simple model the essence of the spin dichroic behavior is captured, generating

almost quantitative agreement with the experimental results.

The investigation is being pursued in a two-pronged fashion: (a)

calibration studies of Ce, the 4f analogue of Pu, at synchrotron radiation sources;

and (b) in house studies of Pu.

Although we have not yet been able to carry out the Pu Double

Polarization experiment, we have been able to test the feasibility of this

approach using Ce, the Rare Earth element analog of Pu. Shown in Figure

12 are the preliminary results for Double Polarization Photoelectron

Spectroscopy of polycrystalline g-Ce, using both a chiral excitation source

(such as circularly polarized x-rays) and spin resolving detection. [25-27]

V          Pu Summary:

The correct Hamiltonian for Pu is being converged upon.

Proven: Pu is a jj-skewed Intermediate Coupling case, NOT LS (Russell-
Saunders).

Proven: VSO >> VDelocalization

Strong Indications for d-Pu: VMAG perturbs VSO  and VMAG > VDelocalization

Possibly: There is an additional cancellation going on in d-Pu, such as
Kondo Shielding, Spin Fluctuation, Non-Collinearity, or Averaging.

We can resolve these last two issues with the Fano Effect measurements.

Probable ordering
a-Pu 5f : VSO > VMAG  ≈  VDelocalization  >  0.
d-Pu 5f :  VSO > VMAG   > VDelocalization    > 0.
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Table 1 Orthogonalized Initial 5f states

[  1> =  [ 3, 1/2>

[  2> =  cosq2  [ 2, 1/2> + sinq2  [ 3, -1/2>

[  3> =  cosq3  [ 1, 1/2> + sinq3  [ 2, -1/2>

[  4> =  cosq4  [ 0, 1/2> + sinq4  [ 1, -1/2>

[  5> =  cosq5  [-1, 1/2> + sinq5  [0, -1/2>

[  6> =  cosq6  [-2, 1/2> + sinq6  [-1, 1/2>

[  7> =  cosq7 [-3, 1/2> + sinq7  [-2, -1/2>

[  8> =       [-3, -1/2>

[  9> =  -sinq7 [-3, 1/2> + cosq7  [-2, -1/2>

[10> =  -sinq6 [-2, 1/2> + cosq6  [-1, -1/2>

[11> =  -sinq5 [-1, 1/2> + cosq5  [ 0, -1/2>

[12> =  -sinq4 [ 0, 1/2> + cosq4  [ 1, -1/2>

[13> =  -sinq3 [ 1, 1/2> + cosq3  [ 2, -1/2>

[14> =  -sinq2 [ 2, 1/2> + cosq2  [ 3, -1/2>

2q2 = arctan (2.4995/ (2.5 + HS/z)) ≥ 0

2q3 = arctan (3.1623/ (1.5 + HS/z)) ≥ 0

2q4 = arctan (3.4641/ (0.5 + HS/z)) ≥ 0

2q5 = arctan (3.4641/ (-0.5 + HS/z)) ≥ 0

2q6 = arctan (3.1623/ (-1.5 + HS/z)) ≥ 0

2q7 =  arctan (2.4995/ (-2.5 + HS/z)) ≥ 0
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Table 2 Energies of the orthogonalized 5f states

E1 = HS/z * 0.5 + 1.5

E2= HS/z *(-0.5 + (cosq2)
2) + 1.0*(cosq2)

2  - 1.5*(sinq2 )
2  +  (cosq2)*(sinq2)*2.4495

E3 = HS/z *(-0.5 + (cosq3)
2) + 0.5*(cosq3)

2  - 1.0*(sinq3)
2   + (cosq3)*(sinq3)*3.1623

E4 = HS/z *(-0.5 + (cosq4)
2) +    0*(cosq4)

2  -  0.5*(sinq4)
2   + (cosq4)*(sinq4)*3.4641

E5 = HS/z *(-0.5 + (cosq5)
2)  - 0.5*(cosq5)

2  -      0*(sinq5)
2    +  (cosq5)*(sinq5)*3.4641

E6 = HS/z *(-0.5 + (cosq6)
2)  - 1.0*(cosq6)

2  + 0.5*(sinq6)
2   + (cosq6)*(sinq6)*3.1623

E7 = HS/z *(-0.5 + (cosq7)
2)  - 1.5*(cosq7)

2  + 1.0*(sinq7)
2   +  (cosq7)*(sinq7)*2.4495

E8 = -HS/z * 0.5 + 1.5

E9 = -HS/z *(-0.5 + (cosq7)
2)  - 1.5*(sinq7)

2 +  1.0*(cosq7)
2   -  (cosq7)*(sinq7)*2.4495

E10 = -HS/z *(-0.5 + (cosq6)
2)  - 1.0*(sinq6)

2 + 0.5*(cosq6)
2   -  (cosq6)*(sinq6)*3.1623

E11 = -HS/z *(-0.5 + (cosq5)
2)  - 0.5*(sinq5)

2 -          0*(cosq5)
2   -   (cosq5)*(sinq5)*3.4641

E12 = -HS/z *(-0.5 + (cosq4)
2) +    0*(sinq4)

2 -     0.5*(cosq4)
2   -    (cosq4)*(sinq4)*3.4641

E13 = -HS/z *(-0.5 + (cosq3)
2) + 0.5*(sinq3)

2 -   1.0*(cosq3)
2   -    (cosq3)*(sinq3)*3.1623

E14= -HS/z *(-0.5 + (cosq2)
2) + 1.0*(sinq2)

2 -  1.5 *(cosq2)
2  -   (cosq2)*(sinq2)*2.4495

2q2 = arctan (2.4995/ (2.5 + HS/z)) ≥ 0

2q3 = arctan (3.1623/ (1.5 + HS/z)) ≥ 0

2q4 = arctan (3.4641/ (0.5 + HS/z)) ≥ 0

2q5 = arctan (3.4641/ (-0.5 + HS/z)) ≥ 0

2q6 = arctan (3.1623/ (-1.5 + HS/z)) ≥ 0

2q7 =  arctan (2.4995/ (-2.5 + HS/z)) ≥ 0
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Table 3

Here are shown the PES Intensity magnitudes (ML) for linearly

polarized excitation and Spin Dichroisms (DC) for circularly polarized

excitation, for a final state of g wave and f wave character.  Relative

intensities between columns depends upon various radial matrix

elements and is thus photon energy dependent.

Each column normalized such that the largest value equals one.

m5f ML
g DC

g ML
d DC

d

3 1 -1 1 1

2 0 0 0 0

1 0.318 -1/5 0.244 1/5

0 0 0 0 0

-1 0.318 1/5 0.244 -1/5

-2 0 0 0 0

-3 1 1 1 -1
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Figure 1
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Figure 2
Here is a picture of the energy of the orthogonalized states as a function  of the
ratio of the exchange and spin orbit splittings.  Hs is the “spin field” or exchange
splitting between states 1 and 8.  (The states are numbered 1-14, starting at the
top.)    z is the spin-orbit splitting parameter.  For Th through Am, only the lower
states, 14 through 9, will be occupied .
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Figure 3a
Schematic  illustration of the x-ray
absorption process.  EF is the Fermi
Level, the energy level between the
occupied and unoccupied states.
The photon (hn) is absorbed, moving
the core level electron (e-) up into
the unoccupied states.

Figure 3b
Example of XAS electric dipole transitions for pure spin orbit split states.

Scheme of the photoexcitation d to f with positive helicity . The arrows indicate the allowed
transitions via relativistic dipole selection rules for positive helicity with the following transition
probabilities normalized to transition G. A=5/2, B=15/2, C=30/2, D=50/2, E=75/2, F=105/2, G=1,
H=8/5, I=9/5, J=8/5, K=1, L=49/10, M=147/10, N=147/5, O=49. Thereby, identical radial parts of
the d5/2 and d3/2 wave functions and of the f7/2 and f5/2 wave functions are assumed. The
arrows with red (blue) color represent transitions which give positive (negative) spin polarization
of photoelectrons. Positive and negative numbers in the rectangles give the angle integrated spin
polarization for given mj using Clebsch-Gordan coefficients. Energy differences are not to scale.
For more detail, see reference 24.  Note that d3/2 to f7/2 transitions are forbidden for pure spin orbit
split states.  Courtesy of Sung Woo Yu.
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Figure 4
Here is shown the experimental determination of the Hs/z ratio from the
experimental XAS Pu branching ratio (B) and a simple model including the effect
of both spin-orbit splitting and magnetic splitting.
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Figure 5
Shown here are the energy values of the orthogonalized 5f component states  (in
units of z)   as a function of the ratio of exchange (Hs) and spin orbit (z) splittings.
At Hs/z = 2.5,  DEMAG ≈ 0.2 eV, from z ≈ 0.57 eV, DESO ≈ 2 eV and DESO = 7z/2.
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Figure 6
Photoelectron Spectroscopy (PES) Experiment and Theory are shown here.  The theory
here is NOT Density of States (DOS) but rather spectral simulations with correct state-
to-state matrix elements.
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Figure 7
Shown here are predictions of strong intensities and reversed dichroisms from
states 9 and 14, for f to d-wave transitions.  Similar results occur for the f to g
transitions (not shown). Hs/z is the Exchange/Spin Orbit Splitting ratio. From the
model, one can calculate the 5f spin, 5f orbital and 5f total moments versus
Hs/z,, assuming the Pu 5f electrons are metallic and do not experience angular
momentum coupling,i.e., following Savrosov and Kotliar. [5]
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Figure 8
Shown here are the  (a) DS line-shapes and (b ) the DS asymmetry.
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Figure 9
Above is our prediction of the dichroism in d-Pu. Double Polarization
Photoelectron Dichroism is the ideal technique with which to probe for such a
dynamically shielded moment, with (1) a probe time on the scale of 10-18 seconds
and (2) the capability to see spin effects in nonmagnetic materials.
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Figure 10
Top, left- unpolarized;
Bottom, left- single polarization due to circularly polarized x-rays;
Top, right- single polarization due to spin detection;
Bottom, right- double polarization photoelectron dichroism.
It should be noted that although the “unpolarized” case with linear polarization is shown, it is
possible to use linearly polarized or unpolarized x-radiation as part of a chiral arrangement, to
achieve X-ray Magnetic Linear Dichroism in PES.  Here the chiral arrangement of vectors
essentially mimics the intrinsic chirality of the circularly polarized x-rays
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Figure 11
Shown here are the experimental results for the Au 4f states, without background
subtraction, as well as the results of the model.
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Figure 12 Fano PES results from Ce, from Ref 26.


